

General Information

- 1. Deep Groove Ball Bearings
- 2. Angular Contact Ball Bearings
- **3. Self-aligning Ball Bearings**
- 4. Cylindrical Roller Bearings
- 5. Tapered Roller Bearings
- 6. Four-row Tapered Roller Bearings
- **7. Spherical Roller Bearings**
- 8. Thrust Ball Bearings

Main Menu

9. Spherical Roller Thrust Bearings

10. Precision Machine Tool Bearings

- High-speed Angular Contact Ball Bearings Type BNH000
- Combination Anguler Contact Ball Bearings Type TAH10, TBH10
- Double direction Thrust Angular Contact Ball Bearings Type TAD20
- Flanged-cup Tapered Roller Bearings
- Cross Tapered Roller Bearings
- Ball Screw Support Bearings
- **11. Automotive Bearings**
- **12. Bearings for Rolling Stocks**

13. Sheave Bearings

14. Ball Bearing Units

15. Plummer Block Housings

Because of their versatility, Single-row, Deep-groove Ball Bearings are the most popular of all the ball bearing types.

NACHI Deep-groove Ball Bearings are available in a wide range of series defined by the JIS(ISO) standard dimension plan and are also made to meet specialized dimension and configuration requirements. NACHI Deep-groove Ball Bearings are manufactured in both standard precision grade (ISO Grade 0 - ABEC Grade 1) as well as in high-precision grades.

<u>Table 1</u> shows common, standard configurations of Single-row Deep-groove Ball Bearings.

<u>Table 2</u> shows a comparison of general characteristics of seal and shield designs for Single-row, Deep-groove Ball bearings.

Attention

(1) Deep-groove Ball Bearings can sustain radial, axial or composite loads.

However when excessive axial load is applied, please consult with NACHI.

- (2) Because sealed or shielded bearings are designed for inner ring rotating applications, the filled grease may leak when they are used with a high speed outer ring rotating condition. In such a case, please contact NACHI.
- (3) When bearings with contact rubber seals are used in a severe operating condition such as high speed or high temperature, the filled grease may leak.

In such a case, a design change or another kind of grease is required.

- (4) When a bearing is mounted on a shaft (into a housing), force should only be applied to the side face of the inner (outer) ring.
- (5) The sealed or shielded bearings should not be washed or heated before mounting.
- (6) It should be noted that mounting errors such as misalignment of the bearing rings cause an appreciable increase in noise level.
- (7) The bearings must always be subjected to a minimum load to prevent sliding movements occurring between the balls and the raceways.

C	onfiguration *	Design	Cross section			
Open (no seals, shields)		Consists of inner and outer rings, balls, and cage.	Open			
	Shield	One or two steel shields provide labyrinth clearance	Z ZZ ZE ZZE			
Sealed or shielded Bearings	Non-contact Rubber Seal	One or two non-contact rubber seals provide labyrinth clearance	NK 2NK NKE 2NKE			
	Contact Rubber Seal	NSL 2NSL NSE 2NSE				
Snap-ring Groove in Outer Ring	N: with snap-ring groo NR: with groove and sn (Use of snap ring a Bearings may also be se	ap ring in outer ring. llows easy mounting and simplified housing design.)				
Flanged Outer Ring	With flanged outer ring. Applicable to Extra-smal Bearings may also be se	Flanged Type				

Table 1. Standerd Configuration of Single-row, Deep-groove Ball Bearings

Note : One seal or shield type bearings may have a seal groove on the other side.

Main Menu 🚺 Back

Table 2. Comparison of Seal and Shield Characteristics

Characteristics	Shield (Z, ZE)	Non-contact Rubber Seal (NK, NKE)	Contact Rubber Seal (NSL, NSE)				
Friction torque	Low	Low	Higher than NK,NKE, Z and ZE				
High speed	Excellent	Excellent	Good (There is some limitation)				
Grease sealing	Good	Better than Z,ZE	 Exellent at low speed The grease may leak from the bearing at high speeds and high temperature. The grease may leak in case of outer ring rotation. 				
Dust proofing	Good	Better than Z,ZE	Excellent (Can be used in severe dust environments)				
Water proofing	unsuitable	unsuitable	Excellent				
Recommended operation temperature range for standard filled grease	-25 ~ 120°C	-25 ~ 120°C	-25 ~ 100°C				

Angular Contact Ball Bearings

Angular Contact Ball Bearings can sustain combined loads of simultaneously acting radial and axial loads because they have a contact angle (α). The contact angle is defined as the angle between the line joining the points of contact between the ball and the raceways in the radial plane.

Single - row Angular Contact Ball Bearings

These bearings are designed with three contact angle classifications as shown in <u>Table 1</u>.

Normally, contact angle A design and B design are fitted with a cage as shown in <u>Table 2</u>. High precision (JIS/ISO class 5 or higher) may be fitted with a machined cage of bronze or phenolic resin or a polyamide cage.

Contact angle C design are generally applied high precision, JIS (ISO) class 5 or higher, and are fitted with a machined phenolic resin cage or a polyamide cage.

Combination Angular Contact Ball Bearings

Single-row Angular Contact Ball Bearings are seldom used as a single unit. Normally they are used as a combination of two and more units.

High precision paired combination Angular Contact Ball Bearings (JIS/ISO class 5 or higher) are used for applications such as machine tool spindles and are usually preloaded.

Three types of combinations are available :

- 1) DB, back to back
- 2) DF, face to face
- 3) DT, tandem

Because clearance of matched set parts is adjusted before shipment, care should be taken to prevent mixing of parts from other sets. Load-carrying capability of combined Angular Contact Bearings are shown in <u>Table 3</u>.

Table 1. Contact Angle a	d Characteristics of Sin	ale-row Angular	Contact Ball Bearings
· · · · · · · · · · · · · · · · · · ·		J · · · J · ·	

Contact Angle	Contact Angle (α)	Example	Load	l capability compa		
Symbol		Bearing No.	Speed	Radial Load Direction (X)	Axial Load Direction (Y)	Cross Section
A	30°	7205 ⁽¹⁾	_	_	_	
В	40°	7205B	Less	Less	Greater	
С	15°	7205C	Greater	Greater	Less	

Note 1) Contact angle symbol "A" is omitted.

2) Axial load can be accommodated in one direction only.

Table 2. Standard Cage Materials(For JIS/ISO class 0 or 6)

Series	Applicable Bore Diameter Numbe							
Selles	Pressed Steel	Machined Brass						
72, 72B	00 ~ 22	24 ~ 40						
73, 73B	00 ~ 19	20 ~ 40						

Table 3. Load-carrying Characteristics of Combination Angular Contact Ball Bearings

		5		3
Configuration	Load Center Distance	Load Capability	Moment Load Rigidity	Cross Section
Back - to - Back (DB)	Long	<hr/>	High	
Face - to - Face (DF)	Short	<hr/>	Low	
Tandem (DT)	_	^	_	

Flush ground set combinations (Universal matching)

NACHI Angular Contact Ball Bearings with a suffix U are flush ground to permit the use of random combinations where two or more bearings are mounted.

Speed Limits

Main Menu

With respect to single-row or combination bearings, the dimension tables show limiting speed for bearings made with machined cages or a polyamide cages. For bearings made with pressed-cages, multiply the table limit by 0.8.

For contact angle C design bearings, the table limiting speeds are applied to high precision bearings of class 5 or higher.

These limiting speeds can be applied when a high quality grease or oil is supplied in proper quantity under light load conditions. When Angular Contact Ball Bearings are used in combination of two or more units, or with larger preload to improve rigidity, the limiting speed must be decreased. Please contact NACHI for design assistance.

Double-row Angular Contact Ball Bearings

This type bearings is made in two contact angle levels as shown in Table 4.

They are selected according to sustained axial and moment load.

Pressed steel cage are used for them.

Back

Some sizes of Double-row Angular Contact Ball Bearing are available with contact seals (2NS) or shields (ZZ).

Table 4. Double-row Angular Contact Ball Bearing Contact Angles and Symbols

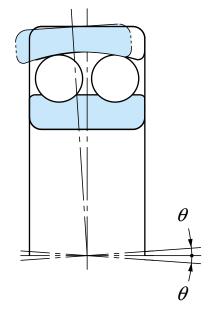
Contact Angle Symbol	Contact Angle (α)	Example Bearing No.		
None	20°	5205		
A	30°	5205A		

Attention

- (1) If bearings are operated under severe conditions such as close to limiting speed, high temperature, or vibrating load, please consult NACHI.
- (2) Bearings with polyamide cage should be use at less than 120°C.
- (3) Combination Angular Contact Ball Bearings should not be mixed with those of other bearings.
- (4) When combination bearings with a optional preload is required, please contact NACHI.

Design

Self-aligning Ball Bearings are particularly suitable for applications where misalignment occurs from errors in mounting or from shaft deflection.


For applications where the bearing load (particularly axial load) carrying capacity is insufficient, spherical roller bearings, which have the same self-aligning property, should be used instead.

Cage

Bearings are fitted with pressed steel cage or polyamide cage. The suffix G of bearing number on the packing surface indicate polyamide cage.

Attention

- (1) Maximum permissible misalignment angle is about 2.5° in the 12 and 22 series, and about 3° in the 13 and 23 series under general service conditions. Care must be taken to provide sufficient clearance between the bearing and surrounding structure when bearing is operating in the full misaligned condition.
- (2) Misaligned bearings will have a tendency to become noisy as speed increases. Due to noise-level constraints, the practical maximum misalignment may be considerably less than the maximum misalignment.
- (3) The dimension tables show the width of the ball assembly as dimension B1 for larger bore sizes of Self -aligning Ball Bearings where width of the ball assembly extends beyond the ring width envelope.
- (4) It is difficult to correctly measure the running clearance of bearings with tapered bore after mounting. Mounting of this type of bearing with tapered bores requires some experience and technique.
- (5) The bearings with polyamide cage should be used at less than 120°C operating temperature.

Cylindrical Roller Bearings

Designs and Configurations

NACHI Cylindrical Roller Bearings are produced in a wide variety of designs and configurations.

Conventional Design

Cylindrical Roller Bearings of conventional design are available in 10 configurations as shown in Fig. 1.

Configurations N,NU,NN and NNU will not sustain axial loading. These configurations must be used as the float end bearing.

Configurations NF, NJ, NUH are designed with the capability of sustaining axial loading in one direction.

Configuration NUH is basically an NU bearing with the addition of a guide ring (an "L" ring).

The NUH dimensional data is the same as the NH bearing configuration.

Configuration NF, NJ, and NUH can sustain axial loading in one direction.

Configuration NH, NP, and NUP have bi-directional thrust load-carrying-capability.

The suffix of the bearing number indicates:

Back

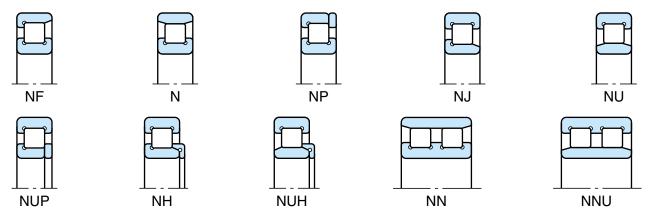
E : high capacity

Main Menu

G : polyamide cage

The bearing with polyamide cage should be used at less than 120°C operating temperature.

Fig 1. Cylindrical Roller Bearing Configurations



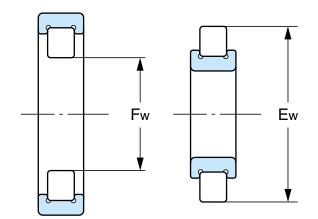

Table 1.Interchangeable Cylindrical Roller Bearings : Tolerance of Inscribed and Circumscribed Diameters

Table 1. Interchangeable Cylindrical Roller Bearings:

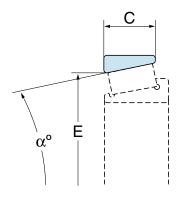
Tolerance of Inscribed and Circumscribed Diameters

Nominal d (n			nce of w ⁽¹⁾	Tolerance of Ew ⁽²⁾		
Over	Incl.	High	Low	High	Low	
_	20	+10	0	0	-10	
20	50	+15	0	0	-15	
50	120	+20	0	0	-20	
120	200	+25	0	0	-25	
200	250	+30	0	0	-30	
250	315	+35	0	0	-35	
315	400	+40	0	0	-40	
400	500	+45	0	_	_	

Notes: (1) Tolerance of inscribed circle diameter

(2) Tolerance of circumscribed circle diameter

Remarks: Interchangeable cylindrical roller bearing means that a separable ring can be replaced by another ring of the bearing with the same bearing number without impairing the function of the bearing.


Tapered Roller Bearings

Interchangeability

Bearings designated as E J (E prefix and J suffix) comply with ISO standards in sub-unit dimensions. The cups and cones of these bearings are internationally interchangeable.

Inch-dimensioned Series

NACHI manufactures inch-dimensioned series Tapered Roller Bearings to ABMA (ANSI) standards.

Fig 1. Sub-unit dimensions

- $\alpha\,$: Contact angle
- C : Cup width
- ${\sf E}\;$: Cup small inside diameter

Combination and Double-row Tapered Roller Bearings

When radial loads act on a Tapered roller bearing, an axial load is generated from the reaction of the internal contact angle of the bearing. This induced axial load creates a separating force on the cup and cone which is normally offset by mounting Tapered roller bearings in pairs or as multi-row sets.

Table 1 shows combination and double-row mounting of Tapered roller bearings.

Main Menu

Back

1)

Table 1. Double-row Tapered Roller Bearing Configurations and Features

Series or Configuration	Cross section	Example Bearing Number	Adjustment
Back-to-back (DB mounting)		E32208JDB10	Combination of two standard single-row Tapered roller bearings. Two mounting systems are used; one using
Face-to-face (DF mounting)		E32208JDF	preset spacers, and the other requiring adjustment using either torque or end-play control.
KBE KDE		150KBE030	Either double inner or outer ring. Adjustment is normally done using spacers. If spacers
KBD		150KBD030	are not used, please contact NACHI for end-play specifications.

Design and Features

Four-row Tapered Roller Bearings are used for the roll necks of rolling mills and are designed to provide the maximum load capacity within a limited envelope size while allowing ease of inspection and maintenance. Pin-type cages and hollow rollers are used in some of the larger bore sizes to maximize load capacity.

Recommended Fit (cylindrical bore)

Back

Metric series <u>Table 1 and 2</u> Inch series <u>Table 3 and 4</u>

Bearing Clearance

Main Menu

Cylindrical-bore, Four-row Tapered Roller Bearings used for rolling mill roll necks have a C2 or smaller clearance. If selection of special radial clearance is required for special service conditions, contact NACHI.

Bearing clearance for Four-row Tapered roller bearings is factory-adjusted as a set and the individual parts of a set must be mounted according to the set marks.

Table 2. Four-row Bearing Chock Fits

-75 +150

+75

Jnit : μ m	ι				ries)	tric Se	(Me		(Metric Series) Unit : µm										
lear limit of nock inside diamater	rance ch	F clear	neter	Chock diam devia	e plane h bore deviatior Dmp	mear diameter	l bearing diameter mm)	outside	Wear limit of roll neck (Reference)	Fit clearance		Roll neck diameter deviation		Nominal bearing bore diameter d (mm) Single plane mean bore diameter deviation		mean bore diameter deviation		bore diameter	
(Reference)	Max	Min	Low	High	Low	High	Incl.	Over	(Relefence)	Max	Min	Low	High	Low	High	Incl.	Over		
160 300 300	80 150 150	25 50 50	+25 +50 +50	+ 60 +125 +120	-20 -25 -30	0 0 0	150 180 250	120 150 180	300 350 400	150 175 200	100 125 145	-150 -175 -200	-120 -150 -175	-20 -25 -30	0 0 0	120 180 250	80 120 180		
300 300 300	150 150 150	50 50 50	+50 +50 +50	+115 +110 +105	-35 -40 -45	0 0 0	315 400 500	250 315 400	480 600 600 600	240 300 300 300	175 200 200 200	-240 -300 -300 -300	-210 -240 -245 -250	-35 -40 -45 -50	0 0 0	315 400 500 630	250 315 400 500		
300	150	50	+50	+100	-50	0	630	500	000	000	200	-000	-250	-30	0	000	500		

Table 1. Four-row Bearing Roll Neck Fits

75 225

Main Menu 🚺 Back

Four-row Tapered Roller Bearings

Table 3. Four-row Bearing Roll Neck Fits (Inch Series)

Nominal bearing bore diameter d (mm)				diameter	e mean bore deviation <i>d</i> s	diar	neck neter iation	Fit cleara	Wear limit of roll	
	Over				High Low High Low			Min	Max	neck (Reference)
(mm)	(inch)	(mm)	(inch)	підп	LOW	nigh	LOW	IVIIII	IVIAX	
127.000	5.0000	152.400	6.0000	+25	0	-120	-150	120	175	300
152.400	6.0000	203.200	8.0000	+25	0	-150	-175	150	200	400
203.200	8.0000	304.800	12.0000	+25	0	-175	-200	175	225	450
304.800	12.0000	609.600	24.0000	+51	0	-200	-250	200	301	600
609.600	24.0000	914.400	36.0000	+76	0	-250	-325	250	401	800

Table 4. Four-row Bearing Chock Fits (Inch Series)

Unit : µm

Unit : µm

		D (mm)			Single plane r diameter		diar	k inside neter iation	Fit cleara		Wear limit of chock inside
-	Ov (mm)	ver (inch)	(mm)	cl. (inch)	High	Low	High	Low	Min	Max	diamater (Reference)
	_ 304.800 609.600	_ 12.0000 24.0000	304.800 609.600 914.400	12.0000 24.0000 36.0000	+25 +51 +76	0 0 0	+ 75 +150 +225	+ 50 +100 +150	25 49 74	75 150 225	300 300 450

Spherical Roller Bearings

Design and configurations

Spherical Roller Bearings are particularly suitable for applications where misalignment can arise from error in mounting or from shaft deflection.

NACHI Spherical Roller Bearings are manufactured in a number of design and material configurations depending on the type of application and size of the bearing.

See the Table 1 for the roller, guide ring and cage design for NACHI Spherical Roller Bearings.

They can sustain radial and axial loads.

Attention

Main Menu

- (1) For high axial load applicadtions, the axial load Fa must not exceed 0.6 of the radial load Fr. If the axial load exceeds 0.6 Fr, please contact NACHI engineers for design assistance.
- (2) For applications where oscillating loads (such as shaker screen applications) or high speed is involved, please contact NACHI for design assistance.
- (3) In very lightly loaded or no load conditions, sliding motion can occur which could damage the bearing.
- To prevent this damage, bearings must be subjected to a load greater than 0.02 Cr (basic dynamic load rating).

Table 1. Design and configurations

Back

Table 1. Design and configurations

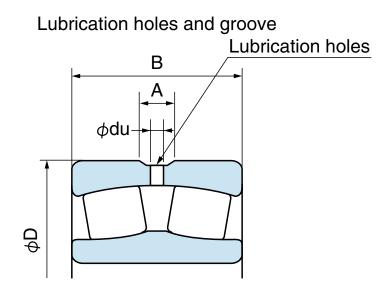
Main Menu 🚺 Back

Suffix Series	EX	EX1	E	E2	E	AEX	AX	A2X	AX
239					20,26, 44~/1060		28~40		
230			20~36		38~/1000		20~36	38~48	
240		24~36			38~/800				24~36
231		22~34	20		36~/800		20~34	36~48	
241		22~32			36~/500				22~34
222	05~30		32	32	34~68	5~30		32	
232		18,20~30	16,17,19		32~/600		20~30	32~40	
213		11~22	04~10,24				6~22		
223	08~26				28~60	7~26		28,30	
Cross Section							S		
Roller		Symmetric	;	Symr	metric		Asymmetric		Asymmetric
Center Guide		Froating Rir	g	Inner F	ling Rib	Inner Ring Rib			Inner Ring Rib
Retainer		Pressed Ste	el	Machined Bra	ass Mild Steel	Ma	achined Bra	ass	Pressed Brass

Lubrication Holes and Groove

The outer ring of Spherical Roller Bearings are often made with lubrication holes and a groove for feeding lubricant. The outer ring may also be configured with oil holes only depending on fitting, mounting or service conditions.

Heat-stabilized Bearings


Main Menu

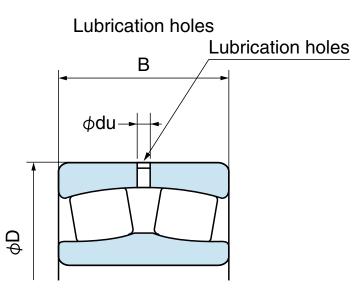

NACHI Spherical Roller Bearings are subjected to a heat-stabilization treatment as standard. They can be used at operating temperature of up to 200°C with minimal dimensional changes occurring.

Table 2. Lubrication holes and groove

Back

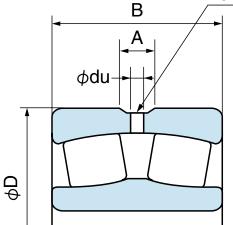
Modification to outer ring	Suffix	Part No. Example	
Lubrication holes and groove	W33	22210E W33	
Lubrication holes	W20	22210E W20	

Table 3. Lubrication holes and groove dimensions

Outer Series ring width B (mm)		2	3900	0	thers
Over	Incl.	A	du	A	du
18	30	7	3	6	3
30	35	8	4	8	3 ^{#1}
35	40	8	4	8	4 ^{#2}
40	50	11	5	10	4 #3
50	65	12	6	11	5 #4
65	80	14	8	14	6 ^{#5}
80	100	18	10	18	8
100	120	24	12	20	10
120	160	28	15	26	12
160	200	35	20	32	15
200	250	40	20	40	20
250	315	45	25	45	20
315	400	50	25	50	25

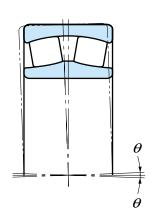
Exceptions ; #1 : 22308 = 4, #2 : 21315 = 3,

Back


Main Menu 🛛 🕐

#3 : 22219, 22220, 23022, 23024 = 5 #4 : 22317, 22318 = 6, #5 : 23036 = 8
 Table 4. Standard Number of Lubrication holes

Nominal ou	Number of lubrication holes	
Over	Incl.	
_	180	4
180	250	6
250	315	6
315	400	6
400	500	6
500	—	8


Lubrication holes and groove

Lubrication holes

Misalignment

Maximum permissible misalignment angle is about 2° under general service conditions. But its angle will vary with the series, service condition and surrounding structure. As rotational speed increases, misaligned bearings will tend to generate more noise. Due to noise constraints, the practical maximum misalignment in a bearing may be considerably less than the maximum permissible misalignment.

Mounting bearings with tapered bore

Mounting bearings with a tapered bore requires some experience and technique.

Bearings with tapered bore are always mounted with an interference fit on the shaft.

To measure the amount of interference fit on the shaft, the axial displacement of the inner ring or the reduction of radial internal clearance due to the interference fit can be used. Generally, the measurement of reduction in radial internal clearance is a more reliable method than measurement of the axial displacement of the inner ring.

Table 5 Mounting Bearings with Tapered Bore

Spherical Roller Bearings

 Table 5 Mounting Bearings with Tapered Bore

(1/2)

Unit: mm

Nominal bo		Radial cl redu		1:	Axial disp 12	lacement ¹⁾ per 1 :	30	Interna	al clearance afte Min	2) er mounting
Over	Incl.	Мах	Min	Min	Max	Min	Max	Normal	C3	C4
24	30	0.015	0.020	0.3	0.35	-	-	0.015	0.020	0.035
30	40	0.020	0.025	0.35	0.4	-	-	0.015	0.025	0.040
40	50	0.025	0.030	0.34	0.45	-	-	0.020	0.030	0.050
50	65	0.030	0.040	0.45	0.6	-	_	0.025	0.035	0.055
65	80	0.040	0.050	0.6	0.75	-	_	0.025	0.040	0.070
80	100	0.045	0.060	0.7	0.9	1.7	2.2	0.035	0.050	0.080
100	120	0.050	0.070	0.75	1.1	1.9	2.7	0.050	0.065	0.100
120	140	0.065	0.090	1.1	1.4	2.7	3.5	0.055	0.080	0.110
140	160	0.075	0.100	1.2	1.6	3.0	4.0	0.055	0.090	0.130
160	180	0.080	0.110	1.3	1.7	3.2	4.2	0.060	0.100	0.150
180	200	0.090	0.130	1.4	2.0	3.5	5.0	0.070	0.100	0.160
200	225	0.100	0.140	1.6	2.2	4.0	5.5	0.080	0.120	0.180
225	250	0.110	0.150	1.7	2.4	4.2	6.0	0.090	0.130	0.200
250	280	0.120	0.170	1.9	2.7	4.7	6.7	0.100	0.140	0.220
280	315	0.130	0.190	2.0	3.0	5.0	7.5	0.110	0.150	0.240

Note: 1) The values are applied for mounting on solid shaft. In case of hollow shaft, larger axial displacement should be applied.

2) In following cases, please make sure radial internal clearance after mounting.

- Initial radial clearance is less than (bore diameter deviation) $\times\,0.5$

- Temperature difference exists between inner ring and outer ring under operation.

Internal clearance after mounting must be over these values.

Spherical Roller Bearings

 Table 5 Mounting Bearings with Tapered Bore

(2/2)

Unit: mm

Nominal bo		Radial cl				lacement 1)		Internal clearance after		2) er mounting
d		redu	ction	1:	12 Taj	ber <u>1</u> :	30		Min	
Over	Incl.	Max	Min	Min	Мах	Min	Max	Normal	C3	C4
315	355	0.150	0.210	2.4	3.3	6.0	8.2	0.120	0.170	0.260
355	400	0.170	0.230	2.6	3.6	6.5	9.0	0.130	0.190	0.290
400	450	0.200	0.260	3.1	4.0	7.7	10	0.130	0.200	0.310
450	500	0.210	0.280	3.3	4.4	8.2	11	0.160	0.230	0.350
500	560	0.240	0.320	3.7	5.0	9.2	12.5	0.170	0.250	0.360
560	630	0.260	0.350	4.0	5.4	10	13.5	0.200	0.290	0.410
630	710	0.300	0.400	4.6	6.2	11.5	15.5	0.210	0.310	0.450
710	800	0.340	0.450	5.3	7.0	13.3	17.5	0.230	0.350	0.510
800	900	0.370	0.500	5.7	7.8	14.3	19.5	0.270	0.390	0.570
900	1000	0.410	0.550	6.3	8.5	15.8	21	0.300	0.430	0.640
1000	1120	0.450	0.600	6.8	9.0	17	23	0.320	0.480	0.700
1120	1250	0.490	0.650	7.4	9.8	18.5	25	0.340	0.540	0.770

Note: 1) The values are applied for mounting on solid shaft. In case of hollow shaft, larger axial displacement should be applied.

2) In following cases, please make sure radial internal clearance after mounting.

- Initial radial clearance is less than (bore diameter deviation) $\times\,0.5$

- Temperature difference exists between inner ring and outer ring under operation.

Internal clearance after mounting must be over these values.

Thrust Ball Bearings

Design

Thrust Ball Bearings are made as single -direction and double-direction bearings. Single-direction Thrust Ball Bearings can sustain an axial load in only one direction, whereas Double-direction Thrust Ball Bearings can sustain bi-directional thrust load.

Both types of Thrust Ball Bearings cannot sustain a radial load.

Both Thrust Ball Bearings are available with aligning housing washers for mating with a housing having an aligning surface radius. Aligning seat washers with an aligning surface radius are also available for ease of design and mounting against a flat housing shoulder.

The Bearings with a polyamide cage are indicated suffix G at bearing number on package surface.

Table 1. Bearing series

Туре	Flat back-face type	Spherical back-face type	With aligning seat
Single- direction	511 512 513 514 29 39 O (1) TAM(2) TG(2)	_ 532 533 534 _ _ _ _ _ _	_ 532U 533U 534U _ _ _ _ _ _
Double- direction	522 523 524	542 543 544	542U 543U 544U

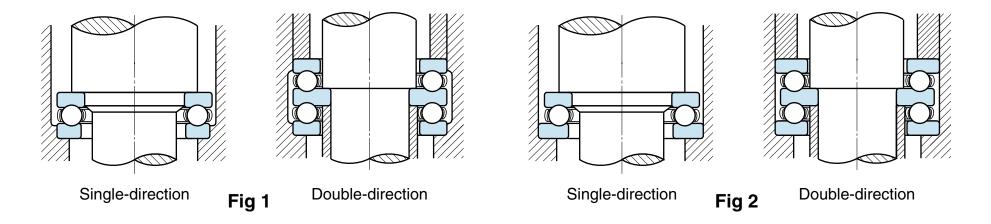
Bearing series	Bore diameter No.
511 512, 522, 532, 542 513, 523, 533, 543 514, 524, 534, 544	28 ~ 26 ~ 22 ~ 17 ~

Notes: (1) Series O is inch-dimensioned.

Back

Main Menu

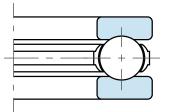
(2) Series TAM, TG is extra-small and miniature.


Thrust Ball Bearings

Attention

Main Menu

Back


- (1) Thrust Ball Bearings with flat housing washers do not permit any angular misalignment between shaft and housing, nor can they accommodate any error of angle between the support surfaces in the housing and on the shaft.
- (2) They are not suitable for high speed applications. Limiting speed are indicated in the dimension table.
- (3) The outside diameters of shaft washer and housing washer or center washer are the same, so clearance must be provided for the outside diameter of shaft washer or center washer by use of a step in the housing bore (See Fig.1). The outside diameter of the shaft washer or center washer of the bearings that are indicated in Table 2 are smaller than that of the housing washer, so no clearance step is required in the housing for the shaft (center) washer. See Fig.2.
- (4) Bearings with polyamide cage should be used less than 120°C.

Cage

Standard fitting cages are shown in Table 3. If other cages are necessary, please contact NACHI.

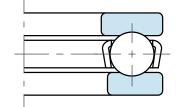


Fig 3. Polyamide

Fig 4. Pressed Steel

I	
	UL I J
1	$(\top \top)$
I	

Fig 5. Machined

Series		Diameter Number	r						
Selles	Polyamide	Pressed Steel	Machined						
511	00 ~ 07	08 ~ 52	56 ~ 72						
512	01 ~ 07	00, 08 ~ 28	30 ~ 72						
513	_	05 ~ 20	22 ~ 40						
514	_	05 ~ 14	15 ~ 36						
522	02 ~ 07	08 ~ 28	30 ~ 44						
523	_	05 ~ 20	22 ~ 40						
524	_	05 ~ 14	15 ~ 36						
532	01 ~ 07	00, 08 ~ 28	30 ~ 72						
533	_	05 ~ 20	22 ~ 40						
534	_	05 ~ 14	15 ~ 36						
542	02 ~ 07	08 ~ 28	30 ~ 44						
543	_	05 ~ 20	22 ~ 24						
544	_	05 ~ 14	15 ~ 20						
29		00 ~ 22	23 ~ 28						
39		05 ~ 24	_						
0 —	_	3 ~ 30	32 ~ 48						
TAM TG	_	3 ~ 8 ⁽¹⁾ 5 ~ 8 ⁽¹⁾							

Table 3. Cage of Thrust Ball Bearings

Remarks 1. Basic load rating of dimension table are indicated in using cage of table 3.

Notes⁽¹⁾ Indicate bore diameter not bore number.

Minimum axial load

When Thrust Ball Bearings are run at high speeds, the contact angle between the ball and the raceway in the radial plane is affected by the centrifugal force of the balls and the sliding movement between the balls and raceways are occurred. The sliding movement may cause damage as smearing. To prevent this damage, Thrust Ball Bearings must be subjected to a given load more than a minimum load from function (1) or (2).

Single-direction Thrust Ball Bearings can sustain only one direction axial load, so if bi-direction axial loads are present, Doubledirection Thrust Ball Bearings must be used and preloaded by a load more than the minimum load.

In case of a vertical axis, shaft weight often exceeds the minimum load. In this case, the acting load may be decreased by the external axial load acting in the opposite direction.

Fa min = $K \cdot n^2$ (1) Fa min = $\frac{Coa}{1000}$ (2) Use the larger result of (1) or (2) Fa min =Minimum axial load (N) K =Minimum axial factor see Table 4 n =Rotating speed(rpm) Coa =Basic static load rating (N)

Table 4. Minimum axial factor K (×10⁻⁶)

Back

Main Menu

Thrust Ball Bearings

Table 4. Minimum axial factor K $(\times 10^{-6})$

Table 4. Minimum axial factor K ($\times 10^{-6}$)(1/2)									
Series Bore No.	511	512, 522	513, 523	514, 524	Series Bore No.	511	512, 522	513, 523	514, 524
00 01 02	1.03 1.26 1.56	1.55 1.92 3.36	- - -	- - -	24 26 28	488 648 782	1130 1940 2150	4130 5140 6330	9980 16100 16900
03 04 05	1.84 3.42 7.19	4.09 7.33 13.1	- - 20.4	- - 43.8	30 32 34	886 997 1420	2490 2880 3940	7140 9960 11100	25800 30000 40100
06 07 08	9.36 11.2 20.4	17.2 32.8 49.7	33.1 58.3 97.2	81.4 128 221	36 38 40	1540 2340 2520	4330 6290 6880	15800 23100 29700	46330 - -
09 10 11	24.6 29.3 44.6	57.9 66.8 133	138 211 326	316 440 656	44 48 52	3000 4900 5580	8130 15900 18400		_ _ _
12 13 14	64.7 72.0 82.8	160 179 200	375 428 596	956 1240 1580	56 60 64	9800 14600 16400	20400 38000 41800	- - -	
15 16 17	94.3 103 116	222 245 359	808 907 1240	1800 2230 2740	68 72	18300 20300	45700 75600	-	
18 20 22	187 363 423	528 850 1010	1390 1850 2740	4320 4790 8220					

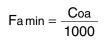
(2/2)

Table 4. Minimum axial factor K (×10⁻⁶)

Series Bore No.	29	39	Series Bore No.	29	39	Series Bore No.	0 –	Series Bore No.	0 –
00	1.55	-	14	99.5	556	3	1.34	18	82.8
01	1.92	-	15	114	704	4	3.62	19	110
02	2.64	-	16	152	927	5	4.65	20	121
03	3.30	-	17	172	1210	6	6.40	21	132
04	3.82	-	18	187	1580	7	7.76	22	176
04 1/2	6.41	-	19	286	2010	8	9.24	23	204
05	7.51	14.2	20	321	2090	9	11.6	24	223
06	9.72	28.9	21	346	2390	10	16.5	26	350
07	20.1	52.3	22	361	3220	11	19.0	28	395
08	25.1	81.0	23	350	3940	12	23.0	30	431
09	31.6	140	24	538	4500	13	21.0	32	580
10	46.1	209	25	498	-	14	31.3	36	1100
11 12 13	54.4 60.7 86.0	284 350 426	26 27 28	_ _ 794	 	15 16 17	42.1 46.9 75.0	40 44 48	1730 2840 3690

Main Menu 🚺 Back

Spherical Roller Thrust Bearings


Because there are many sliding surfaces in Spherical Roller Thrust Bearings (cage-to-guide-sleeve and roller-ends-to-rib), oil lubricant (not grease) should be used.

Aligning angle

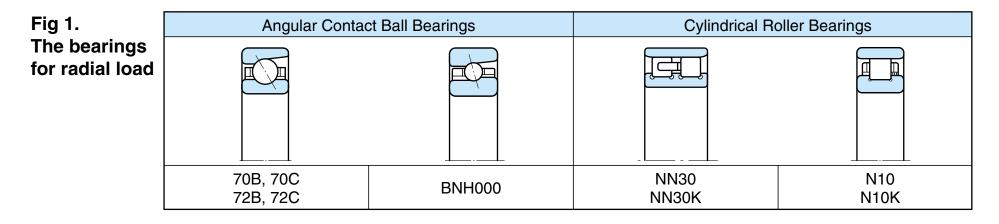
Maximum permissible misalignment angle is about 2° under general service conditions. If the aligning advantages of this bearing type are to be realized, care must be taken to provide clearance for parts in the surrounding structure. The safety-factor "So" must be over 4.

Minimum axial load

To prevent damage caused by sliding motion between the rollers and raceway, spherical roller thrust bearings must be subjected to a load more than the minimum load, Fa min.

 $\theta \rightarrow \theta$

Precision Machine Tool Bearings


Bearings selected for use in machine tools are required to have designs which will ensure high rotational speed and accurate output.

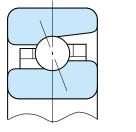
Bearings for Machine Tool Spindles

Back

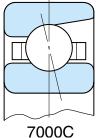
Main Menu

Spindle bearings are generally classified as those that support radial load and those that support thrust loads.

Fig 2.	Double-direction Thrust Angular Contact Ball Bearings	Combination Angular	Contact Ball Bearings
The bearings for axial load		30°	40°
	TAD20	TAH10T	TBH10T

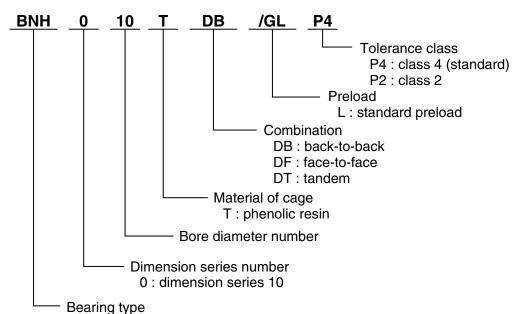


High-speed Angular Contact Ball Bearings Type BNH000


Feature design

Type BNH000 bearings are designed with smaller balls than Angular Contact Ball Bearings Type C. They are suitable for highspeed applications and lower heat generation and are typically used in high speed machining center spindles.

(Their tolerance class is JIS (ISO) class 4 normally.)


Back

BNH000

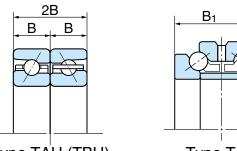
Main Menu

Standard preload

Standard preload of BNH type is designed with light preload.

	Unit : N
Bore Diameter Number	BNH000
07	78.5
08 09 10	98.1
11 12 13	147
14 15	245
16 17	294
18 19 20	392
21	490
22 24	588
26	785
28	834
30	1080
32	1180
34	1370

Note: For DB or DF combination


NA

Combination Angular Contact Ball Bearings Type TAH10, TBH10

Feature design

The ball diameter and quantity are the same as Double-direction Thrust Angular Contact Ball Bearings type TAD20. The contact angle is 30° for TAH10 type and 40° for TBH10 type. They are suitable for high-speed.

Their Duplex Combination width 2B of type DB or DF is the same as width B1 of TAD20 type. TAD20 type are interchangeable to TAH10 type or TBH10 type by changing the method of setting to shaft.

Type TAH (TBH)

Type TAD

Tolerance of outside diameter

The outside diameter of the outer ring is made with a special tolerance for a clearance fit in the housing.

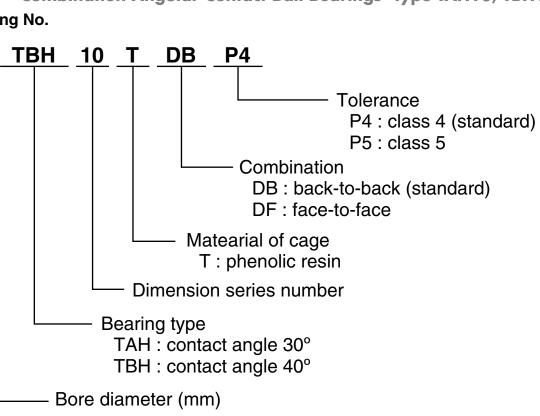
This enables the associated radial bearing to carry a radial load, like as TAD20 type.

Tolerance of outside diameter

Unit : µm

Nominal bearing outside diameter D (mm)		Outside diameter deviation $ extsf{Ds}$		
Over	Incl.	High	Low	
30	50	-20	-41	
50	80	-30	-49	
80	120	-36	-58	
120	180	-43	-68	
180	250	-50	-79	
250	315	-56	-88	

JIS (ISO) class 4 for other tolerances



[→Continue]

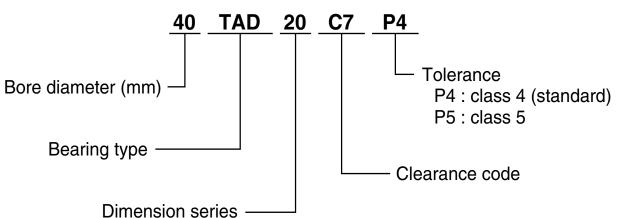
Standard preload	Unit : N		
Bore Diameter Number	ТАН	ТВН	
50	294	539	
55			
60	392	686	
65			
70	588	1080	
75	500	1000	
80	686	1270	
85		1270	
90			
95	1080	1860	
100			
105	1180	2060	
110	1370	2450	
120	1470	2550	
130	1860	3330	
140	1960	3530	
150	2450	4310	
160	2650	4510	
170	3040	5300	

Note: For DB or DF combination

Back

Main Menu 🛛 🕐

Combination Angular Contact Ball Bearings Type TAH10, TBH10


Bearing No.

Double-direction Thrust Angular Contact Ball Bearings Type TAD20

Feature design

This is a two-row bearing with a one-piece outer ring. The ball assembly is arranged as a back-to-back, Angular Contact Ball Bearings with a high contact angle. This type is used as the Axial Load Bearing in conjunction with a Double-row Cylindrical Roller Bearings.

Bearing No.

Standard preload

Bore Diameter Number	Preload (N)		
Dore Diameter Number	C7	C8	
20TAD20	215	590	
30TAD20	245	390	
35TAD20	240	685	
40TAD20	295	005	
45TAD20	295	785	
50TAD20	345	880	
55TAD20	390	980	
60TAD20			
65TAD20	590	1250	
70TAD20		1350	
75TAD20		1750	
80TAD20	685		
85TAD20		2150	
90TAD20	1050	2850	
95TAD20	1150	2950	
100TAD20		3450	
105TAD20	1450		
110TAD20		4400	
120TAD20	1650	4700	
130TAD20	1750		
140TAD20	1950	6350	
150TAD20	2750		
160TAD20		6850	
170TAD20	2950	8800	
180TAD20	3900		
190TAD20		11800	
200TAD20	4100		

[Continue→]

Main Menu 🖞 Back

[→Continue]

Tolerance

The outer ring is made with a negative tolerance for a clearance fit in the housing. This enables the associated radial bearing to carry a radial load.

Inner Ring and Height Tolerances

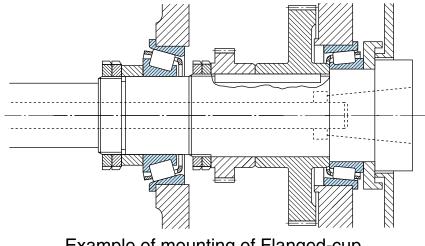
Unit : μ m

Nominal bearing bore diameter d (mm) Over Incl.		ameter			ean bore dial on⊿dmp Cla	meter		f assembled ght T	of inner	∕ariation ring V _{BS} ax)	with re to bo	ce runout ference ore <i>S</i> d lax)	Side face runout with reference to raceway of assembled bearing inner ring and of assembled bearing outer ring <i>S</i> ia <i>S</i> ea (Max)	
	Over	Incl.	High	Low	High	Low	High	Low	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4
	18	30	0	- 6	0	- 5	0	-300	5	2.5	8	4	5	3
	30	50	0	- 8	0	- 6	0	-400	5	3	8	4	5	3
	50	80	0	- 9	0	- 7	0	-500	6	4	8	5	6	5
	80	120	0	-10	0	- 8	0	-600	7	4	9	5	6	5
	120	180	0	-13	0	-10	0	-700	8	5	10	6	8	6
	180	250	0	-15	0	-12	0	-800	10	6	11	7	8	6

Variation and deviation of outer ring

Unit : μ m

bore di	l bearing ameter mm)	diameter variat	mean outside ion of outer ring Omp Class 4	Width d of outer (Ma	ring Vcs	Outside inclination of outer ring <i>S</i> d (Max)		
		High	Low	Class 5	Class 4	Class 5	Class 4	
18	30	-20	-27	5	2.5	8	4	
30	50	-24	-33	6	3	8	4	
50	80	-28	-38	8	4	9	5	
80	120	-33	-44	8	5	10	5	
120	180	-33	-46	8	5	10	5	
180	250	-37	-52	10	7	11	7	
250	315	-41	-59	11	7	13	8	


Flanged-cup Tapered Roller Bearings

This bearing permits a simplified housing design. It is made with high precision (JIS (ISO) class 5 or 4) for applications such as machine tool spindles.

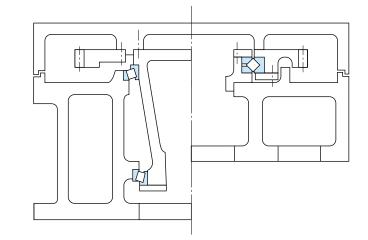
Deviation of flange outside diameter

	er I	Dt	Un	it	:	μ	m
--	------	----	----	----	---	---	---

Df (r	nm)	Deviation					
Over	Incl.	High	Low				
30	50	0	- 62				
50	80	0	- 74				
80	120	0	- 87				
120	180	0	-100				
180	250	0	-115				
250	315	0	-130				

Example of mounting of Flanged-cup Tapered Roller Bearings

Cross Tapered Roller Bearings


This bearing type is designed with two inner rings and one outer ring. The rolling elements (Tapered rollers) are arranged with their surfaces contact the ring raceways in an alternating pattern.

Feature design

- This type can sustain radial, overturning moment and bi-directional axial loads.
- Change in size due to thermal growth does not affect this type of bearing. Preload is stable over the entire temperature operating range.
- Light weight, compact, easy to assemble.

Applications

- Worktable of machining centers or vertical grinding machines
- Work-spindle of lathes or grinding machines
- The indexing mechanisms of large milling machines or drilling machines
- Turntable mechanism of parabolic antenna

Example of mounting of Tapered Roller Bearings and Cross Tapered Roller Bearing

[→Continue]

Tolerances

Main Menu 🚺 Back

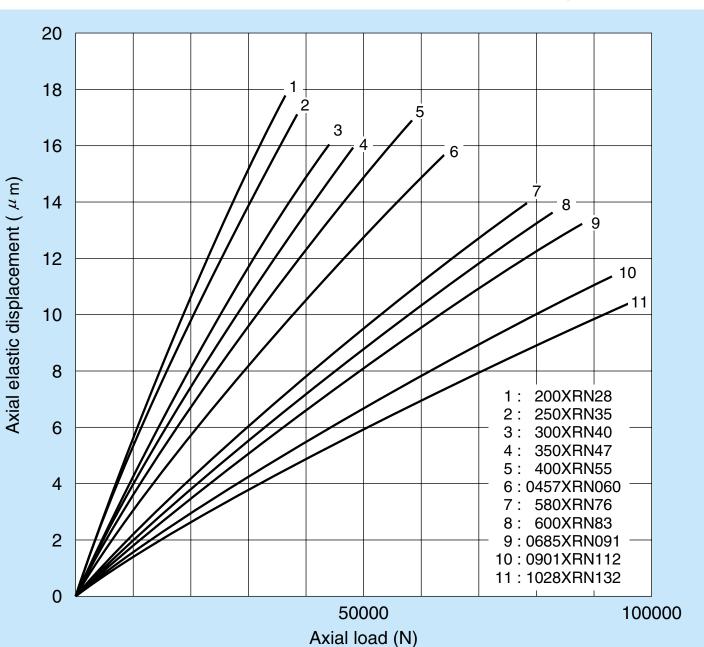
Cross Tapered Roller Bearings

Unit : μ n

Bearing No.	Single plane mean bore diameter variation $ extsf{dmp}$		diameter	mean outside variation of r ring		assembled	Outer ring runout Max		
Deaning No.	<i>∠</i> _a	(mp)mp		,	Radial	Sideface	
	High	Low	High	Low	High	Low	runout	runout	
200XRN28	0	-15	0	-18	+350	-250	7	7	
250XRN35	Ō	-10	0	-13	+350	-250	9	9	
300XRN40	0	-13	0	-15	+350	-250	7	7	
350XRN47	0	-13	0	-15	+350	-250	9	9	
400XRN55	0	-13	0	-18	+350	-250	9	9	
0457XRN060	+25	0	+25	0	+380	-380	9	9	
580XRN76	+25	0	+38	0	+406	-406	10	10	
600XRN83	+38	0	+38	0	+406	-406	12	12	
0685XRN091	+38	0	+38	0	+508	-508	12	12	
0901XRN112	+51	0	+51	0	+508	-508	14	14	
1028XRN132	+76	0	+76	0	+760	-760	16	16	

NACHI

[Continue \rightarrow]



Axial Load and Axial Displacement

Main Menu 🛛 🕚

Back

Ball Screw Support Bearings

This type is used for supporting the ball screws that are used as actuators of high precision and high speed machines, precision measurement equipment, robots, etc.

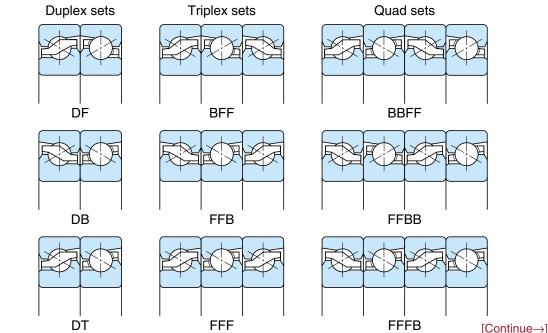
This is a precision and high ability bearing.

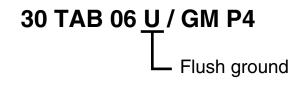
Feature design

• High stiffness

These bearings are designed with polyamide cages and a greater number of balls than conventional angular contact ball bearings. For these reasons, bearing stiffness is greater than conventional bearings.

• Easy fitting and adjustment


These bearings are supplied with a pre-set preload so difficult adjustment and torque measurement is eliminated.


• Simplified bearing mounting structure

These bearings are supplied with a 60° contact angle so radial and thrust load combinations can be sustained. This results in a simplified and compact shaft and housing design.

Flush ground set combinations (Universal matching)

Flush ground set combination bearings are also available with a suffix U. This permits the use of random combinations where two or more bearings are mounted.

[→Continue]

Ball Screw Support Bearings

Unit : μ m

Tolerances for inner ring

Nom bear bore dia (mr	ring ameter	dia	•	emean variati ⊿ds		varia in a s radial	ameter ation single plane (Max)	dian varia	n bore neter ation o (Max)		inner rir	ig wid iter rir	ng width	otev) ↓ of i	iation	of asse bearin rii	runout embled g inner ng (Max) t	rur <i>S</i> d refer	e face hout with rrence e (Max	with refe racew assemble inner ring () of asse bearing	vay of ed bearing g <i>S</i> ia and embled g outer
		· F	⁵	Р	' 4					-	P5		P4							ring Sea	a (iviax)
Over	Incl.	High	Low	High	Low	P5	P4	P5	P4	High	Low	High	Low	P5	P4	P5	P4	P5	P4	P5	P4
10	18	0	-5	0	-4	4	3	4	3	0	- 80	0	- 80	5	2.5	4	2.5	7	3	4	2
18 30 50	30 50 60	0 0 0	-6 -8 -9	0 0 0	-5 -6 -7	5 6 7	4 5 6	5 6 7	4 5 6	0 0 0	-120 -120 -150	0 0 0	-120 -120 -150	5 5 6	2.5 3 4	4 5 5	3 4 4	8 8 8	4 4 5	5 6 7	2.5 2.5 2.5

Note: (1) These deviations are for single bearing. For combination bearings, multiply these values by row number.

Tolerances for outer ring

Unit : μ m

	bear outs diam	Nominal bearing outside liameter (mm) P_{5} P5 P4			Outside diameter variation in a single radial plane <i>VD</i> b (Max)		Mean outside diameter variation VD mp (Max)		Width deviation Vcs of outer ring (Max)		n Radial runout of assembled bearing outer ring <i>K</i> ia (Max)		Outside inclination of outer ring <i>SD</i> (Max)			
_	``	,	P	5	F	P4		<u> </u>						<u> </u>		
	Over	Incl.	High	Low	High	Low	- P5	P4	P5	P4	P5	P4	P5	P4	P5	P4
	30 50 80	50 80 120	0 0 0	- 7 - 9 -10	0 0 0	-6 -7 -8	5 7 8	5 5 6	4 5 5	3 3.5 4	5 6 8	2.5 3 4	7 8 10	5 5 6	8 8 9	4 4 5

Shaft and housing tolerance:

①For the fit, refer to the following table.

^② For the squareness c	of a shoulde	r,refer to the fo	ollowing table.
-----------------------------------	--------------	-------------------	-----------------

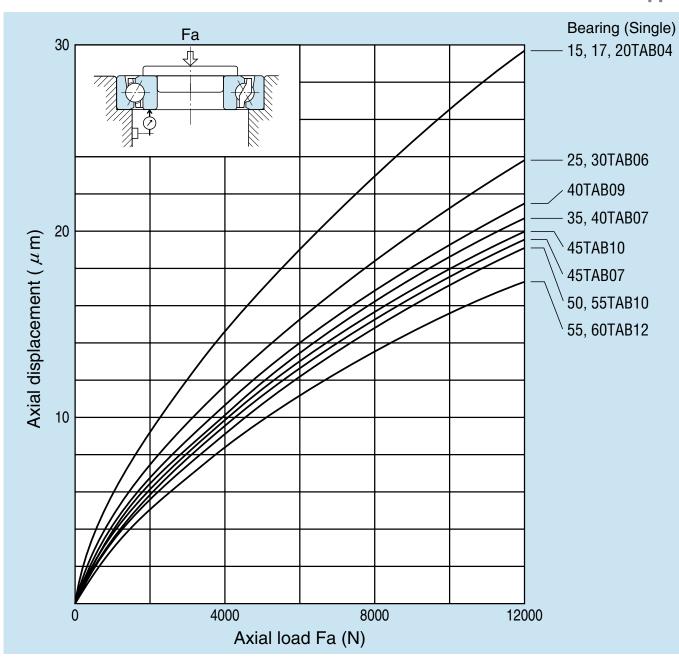
Shaft fit	j5
Housing fit	H6

Dimensions of and housing bor	Squareness	
Over	Incl.	(<i>µ</i> m)
_	80	4
80	120	5

Preload and Axial Spring Constant

Unit : μ m

Bearing No.		Preloa	ad M (N)		Axial Spring Constant (N/ μ m)						
Dearing No.	DF	BFF	BBFF	BFFF	DF	BFF	BBFF	BFFF			
	DB	FFB	FFBB	FFFB	DB	FFB	FFBB	FFFB			
15TAB04	2160	2940	4310	3430	735	1080	1470	1320			
17TAB04	2160	2940	4310	3430	735	1080	1470	1320			
20TAB04	2160	2940	4310	3430	735	1080	1470	1320			
25TAB06	3330	4510	6670	5200	981	1470	1960	1910			
30TAB06	3330	4510	6670	5200	981	1470	1960	1910			
35TAB07	3920	5300	7840	6180	1230	1770	2350	2300			
40TAB07	3920	5300	7840	6180	1230	1770	2350	2300			
40TAB09	5200	7060	10400	8140	1320	1910	2550	2500			
45TAB07	4120	5590	8240	6470	1270	1910	2550	2500			
45TAB10	5980	8140	12000	9410	1470	2160	2890	2790			
50TAB10	6280	8530	12600	9810	1520	2260	3040	2940			
55TAB10	6280	8530	12600	9810	1520	2260	3040	2940			
55TAB12	7060	9610	14100	11100	1770	2550	3480	3380			
60TAB12	7060	9610	14100	11100	1770	2550	3480	3380			


[Continue→]

[→Continue]

Axial Load and Axial Displacement

Main Menu 🚺 Back

Automotive Bearings

Many standard rolling bearings are used in automotive applications.

These standard bearings comply with JIS (or ISO) specifications and are shown in other sections of this catalog.

There are a number of types of bearings designed specifically for use in automotive applications. Bearings manufactured by NACHI for automotive applications include bearings for:

 Car Air Conditioning Magnetic Clutches

- Universal Joints
- Steering sectors Clutch-releases (drive train)
 - Transmissions

King Pins

Wheel Assemblies

Water Pumps

This catalog contains description of Wheel Assembly bearings, Self-aligning Clutch-release Bearings and Double-row Angular Contact Ball Bearings for Car Air Conditioning Magnetic Clutch. When using them, please consult NACHI about operating conditions and environment.

Wheel Assembly Bearings

There are two types of Wheel Assembly Bearings; the 1st generation and the 2nd generation. The 1st has no flange, and the 2nd has a flange on the outer ring or inner ring.

Two types of the 1st generation are available, open type and contact seal type. The 2nd generation has the advantage of easy mounting and light weight.


Self-aligning Clutch-release Bearings

The bearings are a conbination clutch-release bearing and release-hub. They have the advantage of reliability, easy mounting and light weight.

These bearings are classified into inside fork guide type and outside fork guide type according to the fork lever types.

Double-row Angular contact Ball Bearings for Car Air Conditioning Magnetic Clutch

They can be used at a high temperature and high speed. They have higher performance seals for dust ingress prevention and waterproof, and contain long life greases to operate under vibration conditions.

Bearings for Rolling Stock

Various types of bearings are used as "rolling stock" bearings in railway axle-boxes. Cylindrical Roller Bearings and Tapered Roller Bearings are currently the bearing types most often favored for use since they can sustain high loads and provide excellent reliability.

Journal Bearings

Double-row Cylindrical Roller Bearings or Double-row Tapered Roller Bearings for Journal applications are used for each of their capabilities. Cylindrical Roller Bearings are mostly used for easy maintenance and adaptability of high-speed. But in recent years, Tapered Roller Bearings are often used for adaptability of high-speed and long life without overhaul.

JIS(ISO) standard bearings are generally not used in journal bearing applications due to limited space and large load.

Journal bearings are specially designed wider bearings.

Cylindrical Roller bearings without a rib on the inner ring are used with the JB series Ball Bearings that handle axial loads.

Sealed Tapered Roller Bearings and sealed Cylindrical Roller Bearings with side ribs on the inner ring to carry thrust loads can be used for extended periods without overhaul. For this reason sealed bearings are used more often recently.

Bearings with a prefix JC,JT and JB are made to the specifications of Japan Railway Companies. A FCD type is made to NACHI design standards.

Bearings for Gear box

These are bearings for a gearwheel and a pinion. They are mostly Tapered Roller Bearings, because they can sustain radial and large axial loads. They are lubricated with high viscosity gear oil, so the bearings for a pinion application are usually designed specially to prevent seizure at lower temperature. Also these bearings have been specially designed to withstand the severe vibration conditions which are normally found in this type application.

QT type bearings are made to the specifications of Japan Railway Companies, a ED type is made to NACHI design standards.

Bearings for Traction motor

For traction motor, Deep-groove Ball Bearings and Cylindrical Roller Bearings without inner ring ribs are usually used together. These bearings have been specially designed to withstand high speed in grease lubrication and the severe vibrational load conditions. NACHI bearing numbers for the traction motor applications have suffix JT for Deep-groove Ball Bearings and T, TS, or TSL for Cylindrical Roller Bearings.

Special designs

Contact NACHI for the availability of other sizes.

Main Menu

Back

This bearing type is designed as a double-row, full complement Cylindrical Roller bearing with ribs on both inner and outer rings. These bearings will sustain heavy radial load, and will handle moment load and will also take some axial load. Sheave bearings are suitable for a wide variety of uses in addition to sheaves. They are used for hoisting drum and wheel applications, and other applications which operate under heavy load at low speed.

Bearing series	Description
E50, E50NR, E50NRNT	This bearing series is designed for sheave application. It is a sealed (shield or seal) bearing and has a surface coating. The E50 series is made with two shields. The E50NR and E50NRNT have two snap rings in the outer ring. Series E50NR is made with two shields, while the series E50NRNT is made with two rubber seals.
RB48, RC48 RB49, RC49	These bearings are designed for general use. When mounting two or more bearings on an axle, the RB type should be used as a fixed side bearing and the RC type used as a free side bearing.

Sheave Bearings

Deviation o	eviation of bore diameter and bearing width $Unit: \mu m$						f outside dia	meter of outer ri	ng Unit : μ
bore di	Nominal bearing bore diameter Deviation of d d (mm)		on of d	Deviat	Deviation of B		bearing diameter nm)	Deviati	on of D
Over	Incl.	High	Low	High	Low	Over	Incl.	High	Low
30 50 80	50 80 120	0 0 0	-12 -15 -20	0 0 0	-120 -150 -200	30 50 80	50 80 120	 0 0	_ -13 -15
120 150 180	150 180 250	0 0 0	-25 -25 -30	0 0 0	-250 -250 -300	120 150 180	150 180 250	0 0 0	-18 -25 -30
250 315 400	315 400 500	0 0 0	-35 -40 -45	0 0 0	-350 -400 -450	250 315 400	315 400 500	0 0 0	-35 -40 -45
Note: Tolerand	te: Tolerances are values before coating						630 800	0 0	-50 -75

Note: Tolerances are values before coating

Main Menu 🚺 Back

Sheave Bearings

Radial Clea	Radial Clearance of Series 5000Unit : μ m						
outside o	bearing diameter nm)	Standard rac	lial clearance	Nominal be outside dia D (mm			
Over	Incl.	Low	High	Over			
70 80	70 80 100	35 40 45	70 75 90	70 80			
100 125 150	125 150 180	55 65 65	105 115 120	100 125 150			
180 240 280	240 280 310	65 70 70	130 135 140	180 240 280			
310 340 360	340 360 420	75 90 100	150 165 180	310 340 360			
420 460 520	460 520 600	110 125 140	195 215 235	420			
600 650	650 700	155 180	275 300				

Main Menu 🚺 Back

Radial Clearance of Series 4800/4900

Unit : μ m

outside	l bearing diameter mm)	Standard rac	lial clearance
Over	Incl.	Low	High
70 80	70 80 100	40 40 45	75 75 90
100 125 150	125 150 180	55 65 65	105 115 120
180 240 280	240 280 310	65 70 70	130 135 140
310 340 360	340 360 420	75 90 100	150 165 180
420	500	110	195

Ball Bearing Units offer a convenient method of applying highly reliable rolling contact bearings to applications without the necessity of manufacturing a bearing housing.

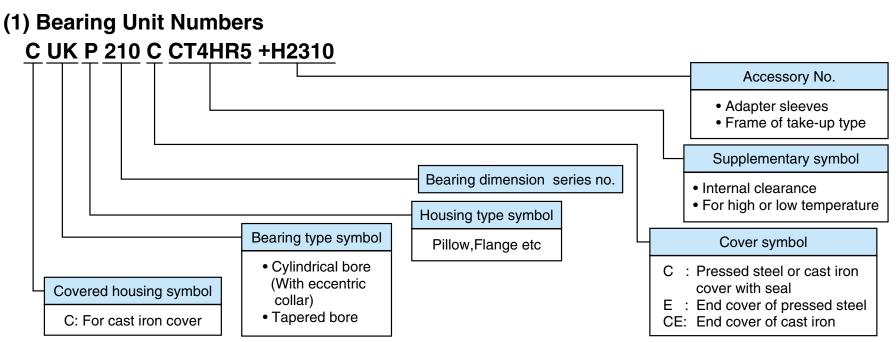
Generally Ball Bearing Units have following features.

Back

- Self-aligning capability
- Sealed

Main Menu

- Easy to mount and dismount
- Interchangeability with foreign made units
- Many types suitable for applications Additionally NACHI Ball Bearing Units have the advantages of easy to use and high reliability.
- Anti-rotation pin on outer ring
- Eccentric collar type is also available
- Base for mount locating pin


Since Ball Bearings for units have the same geometry as deep groove ball bearing, load rating, reliability and other functions are equal with them of deep-groove ball bearing.

1. Designations


Main Menu 🛛 🕐

Number arrangement of Bearing Units and Ball bearings is shown as follows.

(2) Ball Bearing Numbers

Back

NACHİ

2.Tolerance

Main Menu 🚺 Back

Tolerances for ball bearings and housings are shown as follows.

(1) Ball Bearing Tolerances

Tolerances of inner ring	Cylindrical bore : See <u>Table 1</u> Tapered bore : See <u>Table 5.7.1</u> (Technical Information) 1/12 taper bore
Tolerances of outer ring	 Tolerance class 0 of <u>Table 5.1.2</u> (Technical Information) Note : The lower limit of <i>△D</i>mp is not applied within a distance of 1/4 of outer ring width from side faces.
Chamfer dimensions	See Table 2

(2) Bearing Unit Housing Tolerances

Unit: μ m

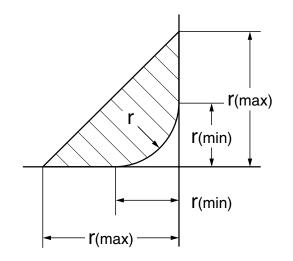

		0		,				•
Bore dia. Nominal d (mm)		Single mean bo devia ⊿d	bre dia. Ition	Bore dia. variation in a single radial plane Vdp	Deviation of a single inner ring width $ extsf{\begin{subarray}{c} ring \\ \end{subarray} \mathcal{AB}_{S} \end{array}$		ngle inner assembled bearing inner ring	
Over	Incl.	High	Low	Max	High	Low	Max	ΔH_{S}
6 10 18	10 18 31.75	+12 +15 +18	0 0 0	8 10 12	0 0 0	-120 -120 -120	15 15 18	±100 ±100 ±100
31.75 50.8 80 120	50.8 80 120 180	+21 +24 +28 +33	0 0 0 0	14 16 19 22	0 0 0 0	-120 -150 -200 -250	20 25 30 35	±100 ±100

Table 1. Tolerance of Inner Ring (Cylindrical bore)

Note (1) This deviation is used on the eccentric locking collar type bearings.

Remark The exact shape of the chamfer is not specified, but its contour will be in the area shown with oblique lines.

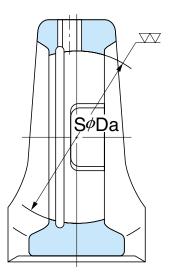
Main Menu 🚺 Back

Table 2. Chamfer dimension Limits

Chamfer dimension		r	Corner of shaft R
Nominal r	Max	Min	Мах
0.5	0.8	0.3	0.3
1	1.5	0.6	0.6
1.5	2	1	1
2	2.5	1.5	1
2.5	3	2	1.5
3	3.5	2.5	2
3.5	4	2.5	2
4	4.5	3	2.5
5	6	4	3

Table 3. Tolerance of cast iron housing

Main Menu 🛛 🕐


Back

Tolerand			rance sy	symbol H7 Tolerance symbol J7			symbol J7	Tolerance symbol K7		
Spherical bearing seating diameter nominal Da (mm)		Deviat single mean of bea seat ⊿D	plane dia. aring ing	Bearing seating dia. variation in a single radial plane VD ap	single mear of be sea	•	Bearing seating dia. variation in a single radial plane VDap	Deviat single mean of bea seat ⊿D	plane i dia. aring ting	Bearing seating dia. variation in a single radial plane <i>VD</i> ap
Over	Incl.	High	Low	Max	High	Lo	· ·	High	Low	·
30 50 80	50 80 120	+25 +30 +35	0 0 0	10 12 14	+14 +18 +22	-1 -1 -1	2 12	+ 7 + 9 +10	-18 -21 -25	12
120 180 250	180 250 315	+40 +46 +52	0 0 0	16 18 20	+26 +30 +36	-1 -1 -1	6 18	+12 +13 +16	-28 -33 -36	18

Notes: (1) Spherical bearing seat dimensions are divided into H7 for clearance fits and J7 and K7 for light interference fits. As NACHI bearings equipped with an anti-rotation pin to prevent outer race rotation, H7 is HACHI standard for the dimension.

(2) For rotating outer ring load or fluctuating load applications, J7 or K7 fitting practice should be used.

(3) Silver series of special alloy material are supplied with special tolerance.

3. Radial clearance of Ball Bearings

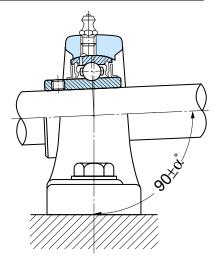
Cylindrical bore	See <u>Table 6.1</u> (Technical Information) ; Radial internal clearance of deep-groove ball bearings (with Cylindrical bore)
Tapered bore	CT2 : CN for cylindrical bore CTN: C3 for cylindrical bore CT3 : C4 for cylindrical bore They are considered the inner ring expansion by fitting with an adapter sleeve.

4. Shaft Tolerance

Main Menu

For cylindrical bore bearings	 Normal load: Shaft tolerance h7, h8 or js7 Heavy or shock load: Shaft tolerance k6, k7 or m6
For tapered bore bearings with an adaptor sleeve	 Shaft tolerance h9

5. Maximum permissible misalignment angle


Normal permissible misalignment angle α is $\pm 1.5^{\circ} \sim 2.5^{\circ}$ because it is restricted to grease supply. Even if grease is not supplied, it is desirable to use at same limiting value.

If larger angles are needed, its angle is permissible to about $\pm 5^{\circ}$.

Back

The maximum misalignment angle of bearing units with a housing cover is $\pm 1.0^{\circ} \sim 1.8^{\circ}$, beyond this angle the inner diameter of the cover will interfere the shaft.

To prevent the unequal contact between seals and shaft, the heat generation and the dust intrusion, misalignment angle should be minimized.

6. Maximum permissible operating temperature

Since Bearing units are sometimes used at higher or lower temperature than normal, NACHI prepares the special specification shown in Table 4.

In case of Bearing units with high temperature specification, the decrease in basic load rating should be considered. And radial clearance should be larger than normal clearance.

NACHI standard radial clearance for high temperature applications is C3 HR4, C4 HR5 and C4 HR23 for cylindrical bore bearings and CT3 HR4, CT4 HR23 for tapered bore bearings.

If there is large temperature difference between inner ring and outer ring, radial internal clearance should be determined reasonably.

- Notes 1. If operating temperature exceeds 150°C, careful investigation including radial internal clearance is required. In such case, Please consult NACHI with operating conditions.
 - 2. The grease shown in Table 4 must be supplied for relubrication. If the different grease are mixed, lubrication ability can deteriorate. Before supplying different grease, please consult NACHI or grease manufacture.

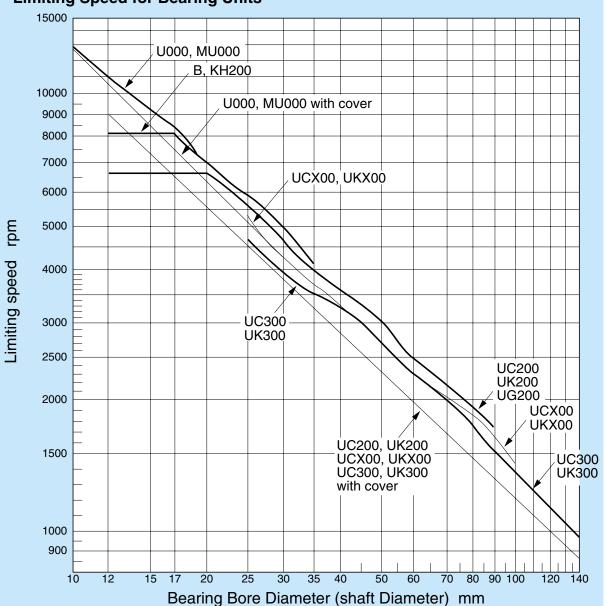
Series	Seal material	Grease	Operating temperature range (°C)	Slinger color
Silver series	Nitrile rubber (NBR)	Alvania Grease 2	- 10 ~ + 80	-
Standard	Nitrile rubber (NBR)	Alvania Grease 3	– 15 ~ +100	Black
HR4 for high temperature	Nitrile rubber (NBR)	Superlube 3	Normal temperature ~ +120	Yellow
HR5 for high temperature	Silicone rubber	Superlube 3	Normal temperature ~ +200	Yellow
HR23 for high temperature	Silicone rubber	Fluorine-contained Grease	Normal temperature ~ +230	Black
CR2A for low temperature	Silicone rubber	Aero Shell Grease 7	 – 40 ~ +Normal temperature 	White

Table 4. Operating Temperature Range

Back

Main Menu

7. Speed limit


Main Menu 🚺 🕐

Back

Limiting speed of bearings is determined by the slip speed limit between the seal and inner ring or shaft.

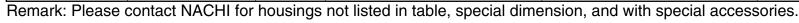
Limiting speed of bearings is shown in the chart below. But this limiting speed should be decreased, if there are difference between shaft center and bearing center or a mixing resistance of grease for HR23 specification. When Bearing units are operated in excess of speed limit, please consult NACHI.

Limiting Speed for Bearing Units

Plummer Block Housings

Back

Plummer Block housings ease to constitute bearing units by using with self-aligning ball bearings or spherical roller bearings. NACHI Plummer Block housing design is improved in term of accuracy, strength and rigidity.


Features

Main Menu

- Wide range of sizes and configurations allows selection of optimal housing.
- Low weight to strength ratio.
- For straight shaft, the bearings with tapered bore and adapter can be mounted at any selected shaft position.
- For stepped-shaft, the bearings with cylindrical bore are fixed by shaft nut.

Table of contents

Ту	Туре		Bore diameter on both sides	Applicable Bearing	Shaft Dia. (mm)
		SN5			20 ~ 140
	SN Standard type	SN6	Sama	Toporod have with adapter	20 ~ 140
		SN30	Same	Tapered bore with adapter	10 ~ 170
		SN31			00 ~ 170
	SN	SN5F	Same	Tapered bore with adapter	20 ~ 140
	Flat bottom type	SN6F	Game		20 ~ 140
	SN	SN2	Same	Cylindrical bore	25 ~ 160
	Large bore dia on both sides	SN3	Came		25 ~ 85
Split type		SN2C	Difference	Cylindrical bore	25 ~ 160
1 31		SN3C	Difference	Cymrancal bore	25 ~ 85
	SN Large bore dia on both sides Flat bottom	SN2F	Same	Cylindrical bore	25 ~ 160
		SN3F	Came		25 ~ 85
		SN2FC	Difference	Cylindrical bore	25 ~ 160
		SN3FC	Difference		25 ~ 85
		SD5			150 ~ 300
	SD	SD6	Same	Tapered bore with adapter	150 ~ 260
	Standard type	SD30	Game	rapered bore with adapter	150 ~ 300
		SD31			150 ~ 300
One-piece type	V	V	Same	Tapered bore with adapter	30 ~ 200
	Standard type	V	Difference	Cylindrical bore	35 ~ 220

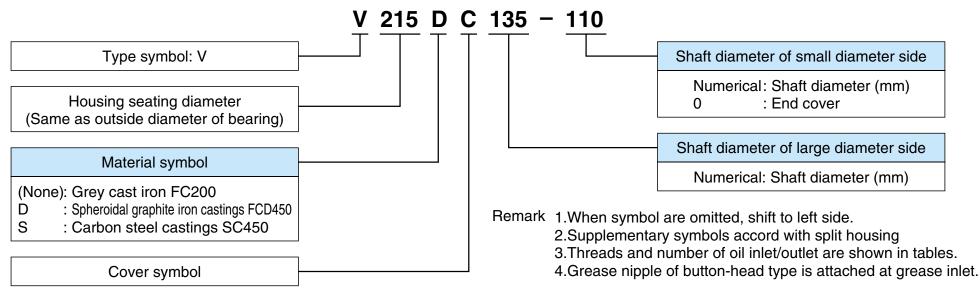
1. Materials for Plummer Block Housings

NACHI Plummer Block housings are made of gray cast iron FC200. Spheroidal graphite iron castings FCD450 or carbon steel castings SC450 can be used for severe conditions such as vibration, shock and heavy load. Materials for accessories are shown in right table.

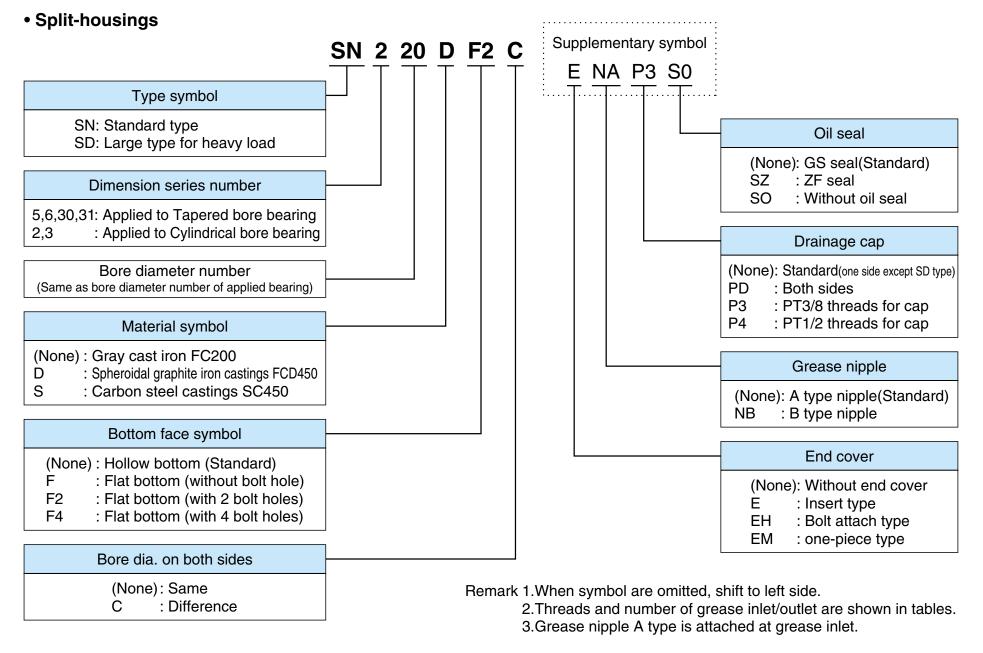
Accessory	Material	Symbol
Bolt	Rolled steels for general structure	SS400
Spring lock washer	High carbon steel wire rods	SWRH62B
Cover of V series	Gray iron castings	FC200
Oil seal	Nitrile rubber	NBR
Drainage plug	Carbon steels for machine structure use	S10C
Eyebolt	Rolled steels for general structure	SS400
Grease nipple	Free-cutting brass	C3604B
Locating ring	Gray iron castings	FC200
Adapter sleeve, Locknut,	Carbon steels for machine structure use	S25C
Lockplate	or Rolled steels for general structure	or SS400
Plain washer	Rolled steels for general structure	SS400

Materials for Accessories

2. Designations


(1)Plummer Block Housings

Designations of Plummer Block Housings are shown as follows.

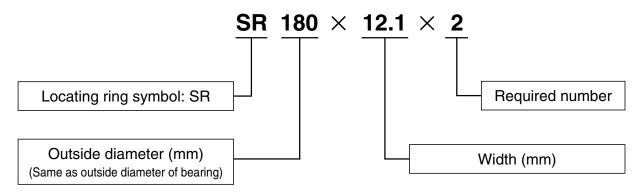

One-piece housings

Main Menu

Back

Main Menu

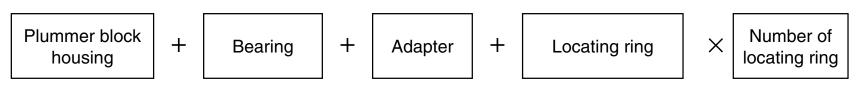
Back



(2)Locating Rings

Locating ring for fixed side housing is identified as follows.

locating ring should be prepared besides plummer block housings.

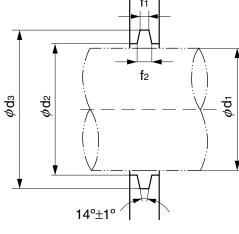

The dimension table show the designation and number of ring required for each bearing.

(3)Combination of Plummer Block Housing, Bearing, Adapter and Locating Ring

The designations of combination are obtained by adding each with '+' as following order.

<u>SN520</u> + <u>22220EXK</u> + <u>H320X</u> + <u>SR200×13.5</u> × <u>2</u>

Remark: Designations for parts not required are omitted.


Plummer Block Housings

(1/0)

3. Tolerances for Plummer Block Housings

The tolerances of housing seating bore, width and height from mounting face to centerline of housing seating bore are shown in dimension tables.

The bore diameter and tolerance of the openings at both sides of housings are shown in right table.

Side opening of housing

Back

Main Menu

) 1	Dimensio	ons and	Tolerances	of Side	Openings			Unit: mm	
f	Shaft Dia		d2		dз		f1	f2	Oil seal
) -	dı	Nominal	Tolerance (H12)	Nominal	Tolerance (H12)	Nominal	Tolerance (H13)	Nominal	(Ref.)
ſ	20 25 30	21.5 26.5 31.5	+0.210 0	31 38 43	+0.250	3 4 4	+0.140 0	4.2 5.4 5.4	GS 5 GS 6 GS 7
	35 40 45	36.5 41.5 46.5	+0.250 0	48 53 58		4 4 4		5.4 5.4 5.4	GS 8 GS 9 GS 10
-	50 55 60	51.5 56.5 62	+0.300	67 72 77	+0.300 0	5 5 5	+0.180 0	6.9 6.9 6.9	GS 11 GS 12 GS 13
<u> </u>	65 70 75	67 72 77	0	82 89 94		5 6 6		6.8 8.1 8.1	GS 15 GS 16 GS 17
	80 85 90	82 87 92		99 104 111	+0.350 0	6 6 7		8.1 8.1 9.3	GS 18 GS 19 GS 20
	95 100 105	97 102 107	+0.350 0	116 125 130	+0.400	7 8 8	+0.220 0	9.3 10.8 10.8	GS 21 GS 22 GS 23

Remark: Number of oil seal is applicable to ZF seal with same number.

|--|--|

	Dimensions and Tolerances of Side Openings (2/3)									
	Shaft Dia		d2		dз		f1	f2	Oil seal	
	d₁	Nominal	Tolerance (H12)	Nominal	Tolerance (H12)	Nominal	Tolerance (H13)	Nominal	(Ref.)	
	110 115 120	113 118 123		135 140 145	+0.400	8 8 8	+0.220 0	10.7 10.7 10.7	GS 24 GS 26 GS 27	
	125 130 135	128 133 138	+0.400 0	154 159 164	0	9 9 9		12.2 12.2 12.2	GS 28 GS 29 GS 30	
	140 145 150	143 148 153		173 178 183	+0.400 0	10 10 10		13.7 13.7 13.7	GS 32 GS 33 GS 34	
	155 160 165	158 163 168	+0.400	188 193 198		10 10 10	+0.220	13.7 13.7 13.7	GS 35 GS 36 GS 37	
14°±1°	170 175 180	173 178 183		203 208 213	+0.460 0	10 10 10		13.7 13.7 13.7	GS 38 GS 39 GS 40	
	190 200 210	193 203 213	+0.460 0	223 240 250		10 11 11	+0.270	13.7 15.5 15.5	GS 42 GS 44 GS 46	

Remark: Number of oil seal is applicable to ZF seal with same number.

Main Menu 🚺 Back

	Dimensio	ons and	ns and Tolerances of Side Openings (3/3)								
	Shaft Dia		d2		dз		f1	f2	Oil seal		
	d₁	Nominal	Tolerance (H12)	Nominal	Tolerance (H12)	Nominal	Tolerance (H13)	Nominal	(Ref.)		
	220 230 240	223 233 243		260 270 286	+0.520	11 11 12		15.5 15.5 17.3	GS 48 GS 50 GS 52		
	250 260 270	253 263 273	+0.520 0	296 306 322	.	12 12 13		17.3 17.3 19	GS 54 GS 56 GS 58		
	280 300 320	283 303 323		332 352 370	+0.570 0	13 13 14	+0.270 0	19 19 19.8	GS 60 GS 64 GS 68		
	340 360 380	343 363 383	+0.570 0	390 412 432		14 13 13	-	19.8 19 19	GS 72 GS 76 GS 80		
14°±1°	400 410 430	403 413 433	+0.630	452 460 480	+0.630 0	14 14 14	20 19.8 19.8	GS 84 GS 88 GS 92			
	450	453	0	505	+0.700 0	14		20.3	GS 96		

фdз

φd2

Main Menu 🚺 Back

Remark: Number of oil seal is applicable to ZF seal with same number.

Applicable Bearings

Bearing type	Sel	f-aligning	Ball Bear	ring	Spherical Roller Bearing							
Housing type	12	22	13	23	230	231	222	232	213	223		
SN5 SN5F	05K ~ 22K	05K ~ 22K	_	_	_	_	05K ~ 32K	18K ~ 32K	_	_		
SN6 SN6F	_	_	05K ~ 22K	05K ~ 22K	_	_	_	_	05K ~ 22K	08K ~ 32K		
SN30	_	_	_	_	24K ~ 38K	_	_	_	_	_		
SN31	_	_	_	_	_	22K ~ 38K	_	_	_	_		
SN2 SN2F	05 ~ 22	05 ~ 22	_	_	_	_	05 ~ 32	18 ~ 32	_	_		
SN3 SN3F	_	_	05 ~ 17	05 ~ 17	_	_	_	-	05 ~ 17	08 ~ 17		
SD5	_	_	_	_	_	_	34K ~ 64K	_	_	_		
SD6	_	_	_	_	_	_	_	_	_	34K ~ 56K		
SD30	_	_	_	_	34K ~ 64K	_	_	_	_	-		
SD31	_	_	_	_	_	34K ~ 64K	_	_	_	-		
V	08(K) ~ 22(K)	08(K) ~ 22(K)	07(K) ~ 22(K)	07(K) ~ 22(K)	22(K) ~ 44(K)	22(K) ~ 40(K)	08(K) ~ 38(K)	22(K) ~ 38K)	07(K) ~ 22(K)	08(K) ~ 32(K)		

 Table 5.1.2
 Tolerance Values of Outer Ring

(1/4)

							Be	aring ou	tside dia	ameter						
Bearing				Single	plane n	nean out Δl	tside dia ^{Omp}	imeter d	eviation		D	eviation o	eviation of a single outside diameter ΔD_{s}			
diameter D												Cla	iss 4			
(mr	m)	Cla	ass O	Class 6		Class 5		Class 4		Cla	Class 2		Diameter series		ss 2	
Over Incl.		High	Low	High	Low	High	Low	High	Low	High	Low	0,1, High	2,3,4 Low	High	Low	
2.5 ⁽¹⁾ 6 18	6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 -11 -13	0 0 0	- 7 - 9 -10	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	-15 -18 -20	0 0 0	-11 -13 -15	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	25 28 33	0 0 0	-18 -20 -23	0 0 —	-13 -15 -	0 0 —	- 8 -10 -	0 0 	-13 -15 -	0 0 -	- 8 -10 -	
500 630 800	630 800 1000	0 0 0	- 50 - 75 -100	0 0 0	-38 -45 -60	0 0 -	-28 -35 -							_ _ _	_ _ _	
1000 1250 1600 2000	1250 1600 2000 2500	0 0 0 0	-125 -160 -200 -250	 	 	 	 	_ _ _ _	 	- - -	 	- - - -	- - - -	_ _ _ _	 	

Notes: (1) This diameter is included in this group.

(2) Applies before mounting and after removal of internal or external snap ring.

(3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.

(4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.

(5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

Table 5.1.2 Tolerance Values of Outer Ring

(2/4)

NACH

														<u> </u>
							Bearin	g outside	e diamete	er				
					Outs	side diar	neter vai	riation in	a single	radial pla	ane (2)			
	g outside							V_{Dp}		-				
	r Nominal		Cla	ss 0			Class 6				lss 5	Cla	ss 4	
	D	Op	oen bear	ing Sea	l · shield	Op	Open bearing Seal shield			Open	bearing	Open bearing		Class 2
(m	nm)	Dia	ameter s	eries b	earing	i	Diameter	series	bearing	Diamet	er series	Diamete	er series	
		7,8,9	0,1	2,3,4	2,3,4	7,8,9	0,1	2,3,4	0,1,2,3,4	7,8,9	0,1,2,3,4	7,8,9	0,1,2,3,4	Open bearing
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
2.5(1) 6	10	8	6	10	9	7	5	9	5	4	4	3	2.5
6 18) 6 18 30	10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 8	5 5 6	9 9 10	5 5 6	4 5	4 5	3 3 4	2.5 2.5 4
		12	9	1	12	10		0			3	5	4	4
30	50 80	14 16	11	8	16	11	9 11	7	13 16	7	5	6 7	5	4
30 50 80	120	19	13 19	8 10 11	20 26	14 16	16	8 10	20	7 9 10	5 7 8	8	556	4 5
	150	00	00	1/	20	10	10	11	25	11	0	0	7	
120 150	150 180	23 31 38	23 31	14 19 23	30 38	19 23 25	19 23 25	14	25 30	13 15	8 10 11	9 10 11	7 8 8	5 7
180	250	38	38	23	-	25	25	15	-	15	11	11	8	8
250	315	44	44	26	_	31	31	19	_	18	14	13 15	10 11	8 10
250 315 400	400 500	44 50 56	44 50 56	26 30 34	_	31 35 41	31 35 41	19 21 25	_	20 23	14 15 17	15	11	10
					_									
500 630	630 800	63	63	38 55 75	-	48	48 56 75	29 34 45	_	28 35	21 26	-	-	-
800	1000	63 94 125	63 94 125	55 75	_	48 56 75	75	45	_	- 35	20	_	_	_
	1250			_	_	_	_			_	_	_	_	_
1000 1250	1250 1600	_	_	_	_	_	_	_	_	_	_	_	_	_
1600 2000	2000 2500	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	2500	-	_	_	_	_	_	_	_	_	_	_	_	—

Notes: (1) This diameter is included in this group.

(2) Applies before mounting and after removal of internal or external snap ring.

(3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.

(4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.

(5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

Table 5.1.2	Toleran	ce Valu	es of O	uter Rin	g		(3/4)					Unit: µm			
Bearing of diameter N D	lominal	al Mean outside diameter variation (2)						Radial runout of assembled bearing outer ring <i>K</i> ea					Variation of bearing outside suface generarix inclination with outer ring reference face <i>S</i> D		
(mm))	Class 0	Class 6	Class 5	Class 4	Class 2	Class 0	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
2.5 ⁽¹⁾ 6 18	6 18 30	6 6 7	556	3 3 3	2 2 2.5	1.5 1.5 2	15 15 15	8 8 9	556	3 3 4	1.5 1.5 2.5	8 8 8	4 4 4	1.5 1.5 1.5	
30 50 80	50 80 120	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5	20 25 35	10 13 18	7 8 10	556	2.5 4 5	8 8 9	4 4 5	1.5 1.5 2.5	
120 150 180	150 180 250	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4	40 45 50	20 23 25	11 13 15	7 8 10	5 5 7	10 10 11	5 5 7	2.5 2.5 4	
250 315 400	315 400 500	26 30 34	19 21 25	9 10 12	7 8 _	4 5 –	60 70 80	30 35 40	18 20 23	11 13 —	7 8 _	13 13 15	10 -	5 7 –	
500 630 800	630 800 1000	38 55 75	29 34 45	14 18 -		_ _ _	100 120 140	50 60 75	25 30 _			18 20 _			
1000 1250 1600 2000	1250 1600 2000 2500	_ _ _ _	_ _ _ _	- - - -		 	160 190 220 250	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	- - -	_ _ _ _	- - - -	

Notes: (1) This diameter is included in this group.

Back

Main Menu 🛛 🕐

(2) Applies before mounting and after removal of internal or external snap ring.

(3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.

(4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.

(5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

Table 5.1.2 Tolerance Values of Outer Ring

(4/4)

ΝΔΟ

Bearing o diameter N		Assembled runout with		uter ring fac Sea (3)	e Outer	e Outer ring width variation V_{Cs} (4)				
D (mm	ו)	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2			
Over	Incl.	Max	Max	Max	Max	Max	Max			
2.5 ⁽¹⁾ 6 18	6 18 30	8 8 8	555	1.5 1.5 2.5	5 5 5 5	2.5 2.5 2.5	1.5 1.5 1.5			
30 50 80	50 80 120	8 10 11	556	2.5 4 5	5 68	2.5 3 4	1.5 1.5 2.5			
120 150 180	150 180 250	13 14 15	7 8 10	5 5 7	8 8 10	5 5 7	2.5 2.5 4			
250 315 400	315 400 500	18 20 23	10 13 —	7 8	11 13 15	7 8 _	5 7 –			
500 630 800	630 800 1000	25 30 _	_ _ _	_ _ _	18 20 	- - -	- - -			
1000 1250 1600 2000	1250 1600 2000 2500	_ _ _ _	- - - -	_ _ _ _	- - - -	- - - -	 			

Notes: (1) This diameter is included in this group.


(2) Applies before mounting and after removal of internal or external snap ring.

(3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.

(4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.

(5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

				C (01033	, 0)	Unit: μ m
Nomina bore dii (m	N	Bore diameter variation in a single radial plane (1)(2)				
()	$ extsf{\Delta} d$ m	р	extstyle d 1mp	– <i>/ d</i> mp	o Vdp
Over	Incl.	High	Low	High	Low	Max
10 18	10 18 30	+ 22 + 27 + 33	0 0 0	+ 15 + 18 + 21	0 0 0	9 11 13
30 50 80	50 80 120	+ 39 + 46 + 54	0 0 0	+ 25 + 30 + 35	0 0 0	16 19 22
120 180 250	180 250 315	+ 63 + 72 + 81	0 0 0	+ 40 + 46 + 52	0 0 0	40 46 52
315 400 500	400 500 630	+ 89 + 97 +110	0 0 0	+ 57 + 63 + 70	0 0 0	57 63 70
630 800 1000 1250	800 1000 1250 1600	+125 +140 +165 +195	0 0 0 0	+ 80 + 90 +105 +125	0 0 0 0	- - - -

Table 5.7.11/12 Tapered Bore (Class 0)Unit: μ m

Note: (1) Applicable to all radial planes of tapered bore.

(2) Not applicable to bearings of diameter series 7 and 8.

	Bearing bore dia. Nominal		Radial clearance									
d (mm)		C2		CN (Normal)		C3		C4		C5		
Over	Incl.	min	max	min	max	min	max	min	max	min	max	
2.5	6	0	7	2	13	8	23	-	-	_	_	
6	10	0	7	2	13	8	23	14	29	20	37	
10	18	0	9	3	18	11	25	18	33	25	45	
18	24	0	10	5	20	13	28	20	36	28	48	
24	30	1	11	5	20	13	28	23	41	30	53	
30	40	1	11	6	20	15	33	28	46	40	64	
40	50	1	11	6	23	18	36	30	51	45	73	
50	65	1	15	8	28	23	43	38	61	55	90	
65	80	1	15	10	30	25	51	46	71	65	105	
80	100	1	18	12	36	30	58	53	84	75	120	
100	120	2	20	15	41	36	66	61	97	90	140	
120	140	2	23	18	48	41	81	71	114	105	160	
140	160	2	23	18	53	46	91	81	130	120	180	
160	180	2	25	20	61	53	102	91	147	135	200	
180	200	2	30	25	71	63	117	107	163	150	230	

Table 6.1 Radial Internal Clearance of Deep-groove Ball Bearings (with Cylindrical Bore) (JIS) (1/2) Unit: μ m

Bearing bore dia. Nominal d (mm)		Radial clearance									
		C2		CN (Normal)		C3		C4		C5	
Over	Incl.	min	max	min	max	min	max	min	max	min	max
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	510
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	690
630	710	20	130	110	260	240	400	380	570	540	760
710	800	20	140	120	290	270	450	430	630	600	840
800	900	20	160	140	320	300	500	480	700	670	940
900	1000	20	170	150	350	330	550	530	770	740	1040
1000	1120	20	180	160	380	360	600	580	850	820	1150
1120	1250	20	190	170	410	390	650	630	920	890	1260

Table 6.1 Radial Internal Clearance of Deep-groove Ball Bearings (with Cylindrical Bore) (JIS) (2/2) Unit: μ m

